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Equations are obtained for the coherent diffraction by a dispersion of spherical vesicles of different 
radii, where each vesicle is bounded by an identical membrane having negligible tangential structure. 
The diffraction pattern is compared with that given by an assemblage of flat sheets of the same mem- 
brane, and the two patterns are shown to differ significantly. The effects of membrane curvature thereby 
interfere with the determination of the membrane's structure; but, when correctly used, they might 
assist that determination. 

1. Introduction 

Dispersions of spherical vesicles are frequently ob- 
tained when membranes are prepared from cells or cell 
organelles, and also by the sonication of phospholipids. 
X-ray diffraction patterns of such preparations are an 
important potential source of information about cell 
membrane structure, and have been studied in recent 
years by various workers (Langridge, Barron & 
Sistrom, 1964; Chapman, Fluck, Penkett & Shipley, 
1968; Wilkins, Blaurock & Engelman, 1971; Engelman, 
1971; Lesslauer, Cain & Blasie, 1971, 1972; Blaurock, 
1973). However, no exact theory relating the diffrac- 
tion pattern of a dispersion of spherical vesicles to the 
structure of the membranous wall of each vesicle has 
apparently been developed.* Instead it has been gen- 
erally assumed that such dispersions yield diffraction 
patterns which are virtually indistinguishable from 
those that would be given by isolated flat sheets of the 
same membrane. Although use of this approximation 
permits, in principle, analysis of the X-ray patterns 
when the membrane is believed to be symmetrict 
(Lesslauer, Cain & Blasie, 1971, 1972), it does not en- 
courage the analysis of patterns from asymmetric 
membranes, into which category all natural lipoprotein 
membranes probably fall. 

To avoid this difficulty, the dispersions can be made 
to give lamellar diffraction patterns when their mem- 
branes are flattened by drying or centrifugation 
(Finean, Coleman, Knutton, Limbrick & Thompson, 
1968; Engelman, 1971; Dupont, Harrison & Hassel- 
bach, 1973; Worthington & Liu, 1973). But, besides 
various technical problems inherent in these methods, 

* After this manuscript was submitted, there appeared an 
alternative theoretical study (Weick, 1974) of diffraction by 
hollow spherical membrane vesicles, treating the problem in 
direct space; but Weick considers only the case where the 
dispersion consists of vesicles with the same diameter. 

t A symmetric membrane here means one with inside/outside 
symmetry, i.e. the scattering density 0 is an even function of the 
radial coordinate u; O(u)=o(-u) when the origin lies at the 
center of the membrane. 

there is the possibility that the flattening procedure 
introduces artefacts - a possibility which might be 
tested by reference to the diffraction pattern of the 
original dispersion. It is therefore believed that useful 
information concerning membrane structure might 
still be obtained from dispersions, and that the best 
stimulus to obtain adequately precise diffraction data 
would be the existence of promising techniques for its 
analysis. As a foundation for developing such tech- 
niques, it is necessary to have an accurate and manage- 
able theory of the diffraction by dispersions of spher- 
ical vesicles. The purpose of this paper is to develop 
such a theory, and to use it to assess the accuracy of 
the approximation referred to above, which will be 
shown to be significantly in error for certain parts of 
the diffraction pattern. Application of the theory to the 
problem of determining the structure of the vesicle 
membrane will be given in later publications. 

2. Diffraction by an isolated vesicle 

It is assumed that the vesicle is spherical and bounded 
by a uniform membrane of arbitrary, (not necessarily 
symmetric) radial structure. By assuming that the 
membrane is uniform, we are supposing that the con- 
tributions of its tangential structure to the diffraction 
pattern are either negligible, or have been corrected 
for. (This question is examined in Appendix I.) Further- 
more, it is assumed that the aqueous contents and 
surroundings of the vesicle have the same scatter- 
ing density. (In practice this would almost always be 
true to within experimental error, since the vesicle 
walls would be too weak to support any significant 
difference in osmolarity between the inside and out- 
side.) 

Let the scattering density of the membrane (relative 
to the surrounding aqueous medium) be O(u), and let 
that part of the membrane represented by 0(0) lie at a 
distance r from the center of the vesicle (Fig. 1). It will, 
on occasions, be useful to specify the origin ~(0) at 
different points with respect to the membrane, and r 
must of course change when a different origin is chosen. 
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(.Use of some defined origin will be denoted by attach- 
ing a subscript to 0; otherwise the origin is assumed to 
lie somewhere within the membrane.) With respect to 
its chosen origin, the transform of the membrane den- 
sity is 

G(R)= I-  0(u) exp (2~iRu)du, (I) 
d-- oo 

where the reciprocal-space coordinate R--(2  sin 0)/2. 
Fig. 1 shows that a part of the membrane with co- 
ordinate u and density O(u) lies at a radial distance 
( r+  u) from the center of the vesicle. Using the well- 
known expression for the transform of a spherically 
symmetric structure, the transform of a spherical 
vesicle is therefore 

f"° F(r,R)=(2/R) (r+u)Q(u) sin {2~R(r+u)}du. 
u I 

The dependence of F on r expresses the fact that, for a 
given choice of origin of the membrane, changes in r 
denote changes in the radius of the vesicle. Unless the 
origin lies exactly at the inside surface of the mem- 
brane, ul is negative but Fig. 1 shows that r+u1>O. 
Since Q(u)=0 when u<ut or U>Uo, the integration 
limits can be replaced by - c o  and +co.  Thus 

R) =(2/R) I~_~ (r + u)o(u) sin {2~R(r + u))du F(r, 

= I m  (2/R)f~_oo(r+u)o(u)exp {2rciR(r + u)}du 

(Z/R) exp (2~iRr)[r f~_ Q(u) = I m  

x exp (2rciRu)du + I ~° uQ(u) exp (2rciRu)du] ; 
d - -  oo 

(2) 

.'. r(r,R) 

= I m  (2/R) exp (2rciRr)[rG(R)+G'(R)/2rci], (3) 

where the prime denotes differentiation with respect to 
R. From a diffraction experiment we might hope to 

x 

CENTRE OF u u--u o 
VESICLE 

Fig. 1. Diagram of the coordinate frame used in deriving the 
transform of a spherical vesicle. An origin (u=0) is chosen 
somewhere within the membrane, whose scattering density 
(dark line) is O(U). o(u) is nonzero (i.e. the membrane scatter- 
ing density differs from that of water) only when ul < u < Uo. 
r is defined as the distance of the origin from the center of the 
vesicle. 

determine F2(r,R), for which a convenient expression 
can be obtained as follows. Define 

H(r,R)=(2/R) exp (2~iRr)[rG(R) + G'(R)/2rci] 
= E(r, R)+ iF(r, R) ,  (4) 

where both E and F are real functions. Then 

FZ(r, R) = ½[EZ(r, R) + FZ(r, R)] - ½[EZ(r, R) - FZ(r, R)] 
= ½]H(r,R)]2-½Re {H2(r,R)} . (5) 

Before proceeding further, it is helpful to gain some 
qualitative insight into the behavior of the two terms 
on the right-hand side of equation (5). We begin with 
the first term which, by equation (4), is (2/RZ)]rG(R)+ 
G'(R)/2rci[ z and is consequently always positive. By 
equation (1) this expression is 

(2/RZ)] I~_oo (r + u)o(u) exp (2rciRu)du[ z, 

and is unaffected by our choice of the origin of 0. If we 
choose it to lie at the middle of the membrane (of 
thickness Uo-ul),  then 

f ½IH(r,R)r2=(2/RZ)I (r + u)o(u) exp (2rciRu)du[ 2. 
u I  

The Fourier component of this term with the highest 
frequency is cos 2JrR(uo-ul), and the term as a whole 
cannot vary much faster than this. 

The second term, ½Re {HZ(r,R)}, can be regarded 
(see Fig. 2) as the projection of a vector whose length 
[by equation (4)] is (2/R2)[rG(R)+a'(R)/2rci[ 2, and 
whose phase is 4~R + 2.  arg {ra(R) + G'(R)/2rri }. Con- 
sider the rapidity with which this vector moves, relative 
to the line OA. The angle between these lines is 
2 .  arg {rG(R)+G'(R)/2~i} which, by equation (1), is 

2.  arg { f '~ (r +u)o(u) exp (2rciRu)du} . 
oo 

The origin of 0 is supposed to lie somewhere within the 
membrane, so this term will change most rapidly when 
the origin is chosen to lie at one surface of the mem- 
brane. In that case the highest-frequency Fourier com- 
ponents of the integral are 

sin 
{2rcR(uo-u,)} . 

C O S  

Thus, apart from occasional rapid 180 ° changes of 
phase (which occur only when both the real and imag- 
inary parts of HZ(r,R) are small), the angle between 
the vector and OA will not change (as a function of R) 
more rapidly than 4rcR(uo-u~). The angle between OA 
and the coordinate frame, however, is 4rcRr; and this 
changes much more rapidly with R, since the vesicle 
radius r is substantially larger than the membrane 
thickness (Uo-u~). Now if the angle between OA and 
the vector were fixed, its projection ½Re {HZ(r,R)} 
would be a cosine wave of high (constant) frequency. 
Because of the changes in length and angle (relative to 
OA) of the vector, this cosine wave will be modulated 
in amplitude and phase; but these modulations will, 
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as we have seen, be slow in comparison with the high 
'carrier' frequency of the cosine wave. 

In summary, the first term on the right of equation 
(5) is positive and changes relatively slowly with R. 
The second term, however, oscillates rapidly like a 
cosine wave of relatively high (but slowly modulated) 
frequency, and amplitude prescribed by the first term. 

3. Diffraction from a dispersion of vesicles 
of  different radii 

We assume that the vesicles, though of different size, 
are composed of membranes of identical structure, and 
are randomly distributed in such a way that inter- 
particle interference effects (which would in any case 
be reduced by polydispersity) can be ignored. Then the 
corrected intensity I(R) will represent the incoherent 
sum of the photons scattered from each vesicle. To 
calculate this intensity we need to define a function 
that describes the size distribution of the vesicles. Let 
p(r)dr represent the fraction of vesicles whose radius 
(measured out to whatever origin is chosen within the 
membrane) lies between r and r+dr. p(r) can be 
regarded as a probability density function with mean 
(r~, variance o~(r), and whose characteristic function 

P ( X ) =  l~_oop(r)exp (iXr)dr. (6) 

The corrected intensity is now 

I(R) oc fo P(r)F2(r, R)dr , (7) 

so 

I(R)OC foP(r)iH(r,R)lZdr-Re loP(r)H2(r,R)dr . (8) 

Even without examining the integrals in detail, their 
qualitative behavior is fairly clear. Since IH(r,R)I z is 
positive and changes only rather slowl2y with respect 
to R, the smearing effect of p(r) will not change it 
drastically. But the rapidly oscillating function 
Re {HZ(r, R)} will, by the principle of stationary phase, 
be annihilated (except very near the origin of R) by a 
broad and smooth function p(r), in which case the 
scattering will (except at very low angles) relate ex- 
clusively to the first integral [Atkinson, Hauser, Shipley 
& Stubbs (1974) give model calculations illustrating 
this effect]. A more detailed analysis of each integral 
now follows. 

4. Fine-fringe component in diffraction by dispersions 

As explained in § 2, Re (H2(r,R)} represents a com- 
ponent of FZ(r,R) consisting of fine fringes whose 
spacing relates to the radius of the vesicle. The second 

IoP(r)H2( r, term of equation (8), Re R)dr, represents 

this fine-fringe component smeared by the size distri- 

bution function p(r). Since r is the distance from the 
center of the vesicle to some chosen origin within the 
membrane, p ( r ) = 0  when r is negative; consequently 
the lower limit of integration can be extended to - c ~ .  
Then 

Re p(r)HZ(r,R)dr= -- p(r) 
0 ~ 

x exp (4zciRr)[rG(R) + G'(R)/2zci]2dr. 

Expansion of the square and use of equation (6) gives 

F Re p(r)H2(r,R)dr 
o 

- 1 r d 2 
- (2zrR) 2 Re [G2(R) ~ P(4nR) 

+4G(R)G'(R) d P(4rcR)+4{G,(R)}2p(4zcR) ] 
?-R 

(9) 

If the distribution function p(r) is smooth and broad, 
its transform P(4rcR) will be negligible unless R is 
small. The same applies to the first two derivatives of 
P(4rcR). For example, if p(r) has (approximately) the 
form of the normal distribution, i.e. if 

p(r)- (a~/~) -I exp [-(r-(r>)2/2az] , (10) 

then 
P(4zcR)- exp (4niR(r)) exp ( -  8zcZaZR 2) (11) 

and all the derivatives contain P(4rcR) as a factor. 
Consequently P(4zcR) and its first two derivatives be- 
come negligible when Ra > 0.3. Thus in most cases the 
fine-fringe component vanishes except at very low 
angles (as expected). However, exceptions may occur 
if the vesicle size, or merely the lower limit of this size, 
were rather precisely determined by biological or 
physical factors. 

When the diffraction pattern shows even a very few 
fine fringes near the origin, useful information can be 
obtained concerning the size distribution of the ves- 
icles. Thus Langridge, Barron & Sistrom (1964) cal- 

IMAGINARY 

2[rG(R) + G L (R)/27ri [~/R 2 - //A 

~ ~ ' ~  2 arcj {rG (R) +Gl(R)/2~ri} 

/ i 4vRr(modulo 27r) 
REAL 

'(I/2)R~{H2(,,R~} 

Fig. 2. Representation of ½Re {H2(r,R)} as the projection of a 
vector in the Argand diagram. 
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culated, from such data, a mean radius of 295 A; and, 
from the disappearance of the fringes at R-xk-a  A -1, 
the criterion Ra-0.3 gives us the rough estimate 
a - 3 5 A .  

5. Slowly modulated component in diffraction 
by dispersions 

We now evaluate the first term on the right-hand side 
of equation (8). 

S o P(r)lH(r'R)12dr= --R ~ P(r)lrG(R)+G'(R)/2nil2dr 

by equation (4); 

- 4 E l, jo p(r) [r2lG(R)12+2r Re {G*(R) G'(R)~2ni J 

+ [G' (R)/2ni[ z] dr 

_ 4 [(r2)lG(R)lZ +2(r) Re,[ G*(R) G'(R) 
R 2 [ [ 2hi J 

+lG'(R)/2ni[ 2] , 

where 

(re):  g~_oorkp(r)dr= g:rkp(r)dr, (12) 

since p(r)= 0 when r < 0. Finally, by using the formula 

(r z) = (r) z + a2(r), (13) 

we obtain the surprisingly simple result 

f = 4 o P(r)[H(r'R)[Zdr= ~ [I(r)G(R)+G'(R)/2niI' 

+ [G(R)lZaZ(R)]. (14) 

This is an important formula since, in most practical 
cases, the diffraction pattern (except possibly at very 
low angles) relates exclusively to this term of equation 
(8). 

6. Validity of the 'flat sheet' approximation 

All previous quantitative analyses of X-ray data from 
inhomogeneous dispersions of spherical vesicles have 
adopted what is here termed the 'fiat sheet' approxima- 
tion. According to this, the diffraction pattern (outside 
those very low angles where there may be fine fringes 
relating to the vesicle diameters) is the same as that of 
a random assemblage of fiat sheets of the vesicle mem- 
brane. Using the exact equation (14) for the diffracted 
intensity when the fine-fringe component is negligible, 
the 'fiat sheet' approximation is 

[(r)G(R) + G'(R)/2nil 2 + IG(R)lZaZ(r)oclG(R)[ 2, 

approximately. Clearly this is accurate when either 

( r ) - +  oo or a2(r)--> c~, as is only reasonable since in 
either case the overwhelming proportion of vesicles 
have essentially fiat membranes. In practice, however, 
the membrane thickness (50-100 A) is not negligible in 
comparison with ( r )  (100-500 A). 

The ideal way to investigate deviations from the 
'fiat sheet' approximation in such cases would be to 
adjust k so as to minimize 

: {I(r)G(R)+ G'(R)/2ni[ z 

+ G(R)lZaZ(r)- klG(R)lZ}ZdR, 

and then to consider the minimum value of this inte- 
gral. Unfortunately, this approach proves mathemat- 
ically intractable. But an approximate estimate of the 
contribution of G'(R)/2ni to the diffraction pattern 
can be obtained from the arguments presented in 
Appendix II. There it is shown that, for a just compa- 
rison of G(R) and G'(R)/2ni, the origin of O(u) should 
be chosen to lie at the center of mass of QZ(u) and that, 
with this origin choice (symbolized by use of the sub- 
script C), the fractional contribution of Gc(R)/2ni to 
any part of the diffraction pattern could be expected to 
be about @(rc)/n(r2). In many cases this approaches 
10%; so, while it would be negligible in some parts of 
the pattern, in other parts it would make a contribution 
o f the order of op to 10 % of the average value of [ Gc(R)[. 

Such a contribution is quite significant when ]Gc(R)] 
happens to be smaller than average. Now Gc(R)/2ni is 
often at its largest where Gc(R) is at its smallest, so the 
effect of Gc(R)/2ni (and hence of the membrane curva- 
ture) on the diffraction pattern is much greater than 
would be suggested by equation (II. 9). This uneven dis- 
tribution of the effect is most clearly apparent in the 
case of vesicles bounded by a symmetric membrane, 
i.e. by one for which Oc(U)= 0c(-u). Gc(R) is then real, 
so that Gc(R) [and hence Gc(R)/2ni] is zero at the 
peaks of Gc(R). As Fig. 3 shows, this has the effect that 
the positions and heights of the maxima correspond 
to those predicted by the 'fiat sheet' approximation. 
The contribution due to membrane curvature is mainly 
concentrated around those minima of Gc(R) where it 
changes sign, since Gc(R) is then particularly large. 
Now the Gc(R)/2ni vector is always perpendicular to 
the Gc(R) vector (since the former quantity is a pure 
imaginary, and the latter a pure real, for a symmetric 
membrane), so the contribution of Gc(R)/2ni always 
increases I(R). Thus Gc(R)/2ni paltly fills those minima 
that lie at nodes of the transform G(R), as shown in 
Fig. 3. Consequently the diffracted intensity can never 
fall to zero, a fact observed experimentally by Wilkins, 
Blaurock & Engelman (1971). Thus membrane curva- 
ture has the effect of obscuring the difference between 
those minima that lie at transform nodes, and those 
that do not. The process of phasing the pattern from 
the course of the intensity curve is thereby hindered, 
making the phases quite unreliable unless the effects of 
membrane curvature are taken into account. 
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With a symmetric membrane,  then, the effects of 
membrane  curvature are significant only in the neigh- 
borhood of  a node of the t ransform Gc(R). Elsewhere 
(re)Go(R) is substantially larger than Gc(R)/2zri and, 
since the two vectors are orthogonal,  the latter causes 
very little increase in the modulus of  their sum. When 
the membrane  is asymmetric,  however, the situation 
is somewhat  different. Gc(R) is complex and has no 
nodes, so it is unlikely that there will be any regions 
where IG'c(R)/2zil > IGc(R)I. In most places it will be 
substantially smaller than IGc(R)I, so that only the 
component  of  the Gc(R)/2zi vector that is parallel (or 
antiparallel) to the Gc(R) vector will significantly affect 
I(R). The effect of  Gc(R)/2~i will thus be greatest when 
the two vectors are parallel (or antiparallel), which 
occurs at s tat ionary points* of  IGc(R)I z. At the maxima 
of  IGc(R)I z, however, the effect will be only small, for 
most of  these maxima occur where both the real and 
imaginary parts  of  Gc(R) are fairly near their own 
maxima,  and are thus not changing rapidly. Conse- 
quently the largest effect is to be expected at the minima 
of  IGc(R)I z, i.e. near the minima of I(R), as seen in 
Fig. 4. The contribution of  membrane  asymmetry to 
enhancing the effects of  membrane  curvature can be 
appreciated by comparing the first vesicle diffraction 
pat tern (continuous curve in Fig. 4) with that given by 
vesicles with the same size distribution and membrane  
structure, but turned inside-out (dotted curve in Fig. 4). 
The curve representing the intensity on the 'fiat sheet' 
approximat ion (broken curve in Fig. 4) nearly bisects 
the other two curves, showing that most of the effects 
of  membrane  curvature would vanish if the two curves 
coincided through disappearance of the membrane  
asymmetry.  This approximate  bisection of  the two 
curves can be understood as follows. The effect of  
G'c(R)/2z~i depends, as we have seen, largely on its 
component  parallel to the Gc(R) vector, i.e. on the 
magnitude of the scalar product  of  the two vectors 
(considered as ordinary two-dimensional vectors). 
When the orientation of  the membrane  is reversed, 
Im {Gc(R)} and Re {Gc(R)/2~ri} change their signs 
while the other two parts  remain the same. Conse- 
quently the scalar product  of  the corresponding two- 
dimensional vectors changes sign, and the change in 
I(R) is approximately reversed. 

In summary,  the 'flat sheet' approximat ion  can be 
expected (for most vesicle sizes) to be significantly in 
error in certain parts  (particularly around the troughs) 
of  the diffraction pattern.  This error need not be 
tolerated, since the exact equation (14) is little more 
complicated to use than is the approximat ion itself. 
A second and more impor tant  conclusion of  the fore- 
going discussion is that the contribution of  Gc(R)/2zri 

* At stationary values of IG(R)I z, O=(d/dR)IG(R)I z= 
(d/dR) [G 2 (R) + G 2 (R)], writing G,(R) and G~(R) respectively for 
the real and imaginary parts of G(R). Hence G,(R)GI(R)+ 
G~(R)G;(R)=O, so the G(R) vector in the Argand diagram is 
orthogonal to the G'(R) vector, and therefore parallel or anti- 
parallel to the G'(R)/2ni vector. 

should be easily detectable in some parts  of  a typical 
diffraction pattern.  This is potentially of  value in deter- 
mining the structure of  the vesicle membrane.  For  ex- 
ample, Fig. 4 shows that the diffraction pattern of  
vesicles with an asymmetric membrane  is sensitive 
to the direction of  the membrane  asymmetry,  and 

/ I I I 

I I 
I I I I I 

0 0 . 0 1  0 . 0 2  0 . 0 3  

R (A'% 

i 
0 . 0 4  0 . 0 5  

Fig. 3. A plot of log~0 {I(R). R 2} against R, where I(R) is the 
intensity of diffraction at a reciprocal spacing R(A-1) from 
a dispersion in which the vesicle membrane is symmetric. 
The membrane density (insert) is that for a phospholipid 
bilayer (Lesslauer et al., 1971). The vesicle dimensions 
correspond with those of the fraction II liposomes of 
Huang (1969) : (rc) = 125/k (implying a mean outer diameter 
of ,-. 300/k), and or(r)= 10/~. Solid line - correct intensity for 
dispersion (omitting any fine fringes); broken line - intensity 
given by a random assemblage of flat sheets with the same 
membrane structure. 
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Fig. 4. A plot of log~0 {I(R). R 2} against R, where I(R) is the 
intensity of diffraction at a reciprocal spacing R (/~-~) from 
a dispersion in which the vesicle membrane is asymmetric. 
The membrane density (insert) is hypothetical. The vesicle 
dimensions correspond approximately with those of the 
chromatophores studied by Langridge et al. (1964):^(rc)= 
300 A (implying a mean outer diameter of ~690 A), and 
or(r) = 35 A. The fine-fringe term (negligible for R > 1/100 .~) 
is omitted. Solid line - correct intensity for the dispersion 
with center of vesicles on side A of the membrane; dotted 
line - as above, but with center of vesicles on side B; broken 
line - intensity given by a random assemblage of flat sheets 
with the same membrane structure. 
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could therefore provide evidence concerning the orien- 
tation of the membrane in the vesicle. Furthermore, 
when the membrane is symmetric, the intensity minima 
which occur at nodes of the membrane transform 
might be distinguished from those that do not by the 
sensitivity of the former to the mean vesicle diameter. 
These and other applications of the theory developed 
in this paper will be examined in later publications. 

Research carried out at Brookhaven National Lab- 
oratory under the auspices of the U.S. Atomic Energy 
Commission and also supported by a grant (AI 11585) 
from the National Institutes of Health. 

APPENDIX I 

Effect of tangential membrane structure on the diffraction 
pattern of dispersions 

If the vesicle membrane contains significant tangential 
structure, we must replace Q(r) by 0(r, 0,¢), where r is 
now the radial coordinate and (r,O,~o) are spherical 
polar coordinates, 0 measuring the angle from the z 
axis. If we now define 

l $2 fn, m(r) = ~ sin 0 pm (cos 0)[ Q(r,O,c;) 

× exp (-im~o) dcp]d0, (I. 1) 

where Pro(x) is an associated Legendre function, then 
f0.0 represents the spherically symmetrical density ~o(r) 
used in this paper. The Fourier transform of the vesicle 
density is now denoted by F(R, O, ~), where (R, O, ~) 
are the spherical polar coordinates of reciprocal space. 
However, the diffraction pattern of an isolated vesicle 
would relate to 

(F(R, O, q))2)o, ~ 

- -  1 ~ S 2~ 1 sin 0 [ IF(R,O,~b)[Ed~]dO. (I.2) _ _  - . . . . . .  

4zc o o 

Harrison (1967, 1969) has shown that 

(F(R, O, ~)2)o. ~ =[(2/R ) So rJo, o(r) sin (2rcRr)dr] 2 

" Io + ~  [ ~  (16~2C,. m)-11 ,'zf,.m(r)j,(2rcRr)drl2], 
n=O m = - n  

(I.3) 

where 
(n + m) ! 1 

C,.m- (n-m)!  2n+ l 

and j,(x) is a spherical Bessel function. (This equation 
represents the application of Parseval's theorem to the 
angular components of spherical harmonics, in terms 
of which the Fourier transform is being expressed.) 
When we consider a dispersion of vesicles with different 
radii, the above equation must be averaged with respect 

to the size distribution function ptr). Although this 
paper is concerned only with the averaging of the first 
term alone, it is clear from the above equation that the 
averaging of that term will not be changed when the 
entire series is averaged with respect to p(r). Thus, if 
the remainder of the averaged series could be deter- 
mined, it would be possible to subtract it from the 
corrected intensity, obtaining the quantity, 

t~p(r)F2(r,R)dr, which is investigated in this paper. 
I / I , J  

A rough estimate of this remainder can be obtained 
from the diffraction pattern of preparations in which 
the spherical averaging has been circumvented by 
drying or centrifugation (Finean, Coleman, Knutton, 
Limbrick & Thompson, 1968; Engelman, 1971; 
Dupont, Harrison & Hasselbach, 1973; Worthington 
& Liu, 1973). In such preparations the tangential 
structure makes only a minor contribution to the 
X-ray pattern (Fig. 2 of Worthington & Liu, 1973), 
particularly when it is remembered that the edges of a 
flattened vesicle will contribute to that region of an 
X-ray pattern where evidence for tangential structure 
is sought. The relative insignificance of the tangential 
structure is also apparent in the diffraction patterns of 
oriented lamellar membrane systems such as synthetic 
multilayers (Levine & Wilkins, 1971), nerve myelin 
(Schmitt, Bear & Clark, 1935) and the discs of rod 
outer segments (Blaurock & Wilkins, 1969). 

APPENDIX II 
Size of the contribution of the term G'(R)/2rd to the 

diffraction pattern 

First we shall investigate the relative magnitudes of 
G(R) and G'(R)/2~i and then discuss the size of the 
latter term's contribution to the diffraction pattern of 
a dispersion of vesicles, considering the case when the 
intensity is essentially given by equation (14). 

When we try to compare the magnitudes of G(R) 
and G'(R)/2~zi we immediately encounter the problem 
that the result depends on our choice of the origin of 
the membrane density Q(u). Consider the case of an 
isolated spherical vesicle. Suppose we first choose the 
origin to lie at some part of the membrane which is at 
a distance r~ from the center of the vesicle, and that we 
calculate by equation (1) the functions GI(R) and 
G~(R)/2rd. If we next choose the origin at some different 
part of the membrane at a radius r2, we have Q2(u)= 
~ ( r 2 - r l  + u), and we now calculate 

G2(R) = exp [2xiR(rl-rz)]Gl(R) (II. 1) 
and 

G2(R)/2rci 

=exp [2~iR(rl-r2)]{G~(R)/Zrci+(rl-rz)G~(R)}. (II.2) 

Although the diffracted intensity calculated from equa- 
tion (14) is (as we should require) the same with either 
origin, the relative magnitudes of G(R) and G'(R)/2~i 
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change as the latter quantity acquires or loses some 
component of the former on displacement of the 
origin. Since this component obeys the 'flat sheet' ap- 
proximation exactly, we might be misled into exagger- 
ating the inaccuracy of that approximation if we were 
to choose the origin incorrectly. 

We should thus choose the origin so as to minimize 
or eliminate the component of G(R) contained in 
G'(R)/2rci. For this purpose we can calculate the corre- 
lation 

i ~ G'(R) Q= G * ( R ) ~ d R  (II.3) 
0 

as a function of the position of the origin, and proceed 
to minimize Q. It is shown in Appendix III that 

Q= ½1~_oo uoZ(u)du+(i/4rc)[ l~_oo O(u)du] z. (I1.4) 

The imaginary part of Q is independent of the choice 
of origin. (This part vanishes if the lower integration 
limit in equation (II. 3) is extended to -oo) .  More im- 
portant is the real part, which measures the integral of 
the scalar product of G(R) and G'(R)/2ni, each being 
represented as a two-dimensional vector in the Argand 
diagram. By equation (II.4) the real part can be made 
to disappear if the origin of O(u) is placed at the center 
of mass of 02(u), a choice of origin that will be indicated 
by the subscript C on all relevant quantities. When the 
origin of ~o is chosen in this way, Gc(R)/2rci is uncor- 
related with Gc(R), and it should be at least approx- 
imately true that the contribution of the term G'(R)/2~i 
to the diffraction pattern is minimized. Moreover, 
when G'(R)/2rci has this minimum value, its contribu- 
tion to the expression [(r)Gc(R)+Gc(R)/2rdlZ+ 
IGc(R)lZaZ(r) should give an approximate measure of 
the deviation of that expression from the 'fiat sheet' 
approximation. 

Proceeding on these assumptions, we now calculate 
the contribution of Gc(R)/2rci to the total diffraction 
pattern. From equations (8) and (14) 

I °° f °° I(R)RZdRoc I(r,:)Gc(R)+Gc (R)/2~zil"dR 
0 0 

i 
o o  

+a2(r) IGc(R)I=dR oc [ ( rc)  ~ +cr=(r)1 
0 

IS ] x IGc(R)12dR+2(rc)Re G~(R) ~ dR 
0 0 

dR 

oc (r~) IGc(R)IZdR + --2~-[- 
tO , 0  

dr ([I.5) 

by equations (13) and (II.4). 

Thus an approximate measure of the mean fractional 
error of the 'fiat sheet' approximation is 

~ =  IGc(R)/2rcil2dR/{(rg) IGc(R)I2dR}.  (II.6) 
0 

Since IGc(R)I 2 is an even function, 

f :  IGc(R)I2dR 

by applying Parseval's theorem to equation (1). 
Similarly, 

I °° l Gc( R)/2~zi lZd R 
0 

=½ l~_oo IGc(R)/2zdlEdR=½1~_oo uZo~(u)du. (1I. 8) 

Equation (II. 5) now gives the estimated mean fractional 
error as 

~=72/(r2c) (11.9) 

where 7 is the one-dimensional 'radius of gyration" of 
the squared membrane density, i.e. where 

s 72= uZo~(u)du O~(u)du . (II. 10) 
- - c o  - - c o  

The estimated mean fractional error c~, by equation 
(II. 9), is in most cases only a few percent or less, so the 
overall contribution of G'(R)/2rci is quite small. But 
we must now investigate its distribution, i.e. how large 
we might expect that contribution to be at any part of 
the diffraction pattern. From equations (II.6) and 
(II.9) we can suppose that IGc(R)/2rdl z has a typical 
value of about 721Gc(R)I 2, i.e. that IGc R)/2rcil has a 
typical value of about 71Gc(R)I. If the phase angle be- 
tween the Gc(R) and G'c(R)/2rci vectors in the Argand 
diagram is co, then I(rc)Gc(R)+G'c(R)/2rcil 2 has the 
t2cpical value of about I Gc(R)I 2((rc)2 + 2(rc)y cos 09 + 
72). Now, as we have seen, the integral and hence the 
average of the scalar product of the Gc(R) and 
Gc(R)/2rd vectors is zero, i.e. the average value of 
cos co is zero. Since 09 generally passes through all 
angles, a typical value of cos oo will be + 2/re. Neglect- 
ing 72 in comparison with (rc) 2 or 2(rc)7 cos co, the 
fractional contribution of Gc(R)/2rci to any part of the 
diffraction pattern could therefore be expected to be 
about 47(rc>/rc(r~>. 

APPENDIX m 

Evaluation of an integral 

It is required to evaluate 

I :  G'(R) 
Q= G * ( R ) ~ d R  . 
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+ iG2(O)/4ze, 

since [G(oo)12 =0.  

We can write Q=½(Q+Q*)+½(Q-Q*), where the 
first two terms on the right constitute its real, and the 
last two its imaginary part. Both G(R) and G'(R)/2zd 
have Hermitian symmetry, since they are Fourier 
transforms of the real functions Q(u) and uo(u), re- 
pectively. Consequently 

Q=½ G ( - R )  ~ d R + ½  G(R) dR 
o 2~zi 

? +3 [G(-R)G'(R)/2gi-G(R)G'(-R)/2gi]dR 
0 

= - {  I -°° G(S) 
G' ( -  S) 

0 ........ 2)]'-- d S  

+½S°°G(R) G ' ( - R )  1 So d 
o ..... 2~i ....... d R +  4 ~  d R  

× [ G ( -  R)G(R)]dR 

G ' ( - R )  d R -  i 
2~i T-~ [IG(R)Iz]R==~° 

G ' f - R )  
2zci exp ( -  2z~iRx)drlx=o 

By the convolution theorem, the integral is the con- 
volution of the transforms of  G(R) and of G'(R)/2zri, i.e. 

S I_ .'. Q=½ uoZ(u)du+(i/4rc)[ O(u)du] z. 
- -  c x ~  o o  
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The Relation between Reduced and Conventional Unit Cells for Centred Monoclinic Lattices 
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It is known that 13 among the 44 types of (Niggli) reduced cells correspond to centred monoclinic 
lattices. For these 13 types, the connexion is given between the reduced cell and a conventional cell. 
For centred lattices of monoclinic and orthorhombic symmetry, we describe the shape of the conven- 
tional cell for the different types of reduced cell. Errors are corrected in the section on Reduced Cells 
of the International Tables for X-ray Crystallography [Vol. I (1969), Birmingham: Kynoch Press]. 

In troduct ion  

In 1928, Niggli described a unique choice of 'reduced' 
cell among the infinitely many different primitive cells 

* Present address: GabeMitteweg 71, CH-3323 B/iriswil, 
Switzerland. 

by which a given lattice can be described. Such a unique 
choice makes it possible to list the lattice parameters in 
a standard way also in the case of monoclinic and tri- 
clinic crystals. Niggli showed how the Bravais class can 
be read offthe reduced cell, and described the connexion 
between the reduced cell and a (generally not primi- 
tive) conventional cell that respects the lattice symme- 


